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ABSTRACT 

The response of bridge structures to moving loads is investigated using modal 
superposition methods. Two distinct modal superposition methods are available: the mode- 
displacement method and the mode-acceleration method. While the mode-displacement 
method is widely used in the analysis of both continuous and discrete systems, the mode- 
acceleration method is typically given for discrete systems only. This report introduces 
general operator notation as a way to extend the mode acceleration method to the analysis of 
arbitrary continuous or discrete structural models and shows that the formulation is available 
for arbitrary self-adjoint systems. 

The problem of a damped and undamped beam subjected to a concentrated moving 
load is considered. The displacement, shear force, and bending moment solutions are 
formulated to accommodate any time-dependent moving force, including randomly varying 
vehicular loads. While both mode-displacement and mode-acceleration methods provide 
reasonable displacement responses, the mode-acceleration method provides superior moment 
and shear estimates in the vicinity of the moving load at a given level of approximation 
because of its ability to directly incorporate the pseudo-static response of the system into the 
solution. This insight, which is readily applicable to the study of transportation structures, 
suggests that mode-acceleration solution techniques can significantly reduce computational 
time and labor when modeling highway bridge behavior. 
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COMPARISON OF MODAL SUPERPOSITION METHODS FOR THE 
ANALYTICAL SOLUTION TO MOVING LOAD PROBI_EN• 

•omas T. Baber, Ph.D. 
Peter J• Massarelli 

The dynamic response of bridge structures to transient vehicular loadings is a 
particularly important aspect of bridge design and evaluation. Although computational 
modelling of this response can bring valuable insight to the interpretation of field data, the 
development of analytical models for actual structures is quite complex. Analytical models of 
simpler systems can provide an understanding of the structural behavior characteristics caused 
by dynamically applied loads, and this understanding can then be applied to more complex 
systems. Moreover, studies of simple systems can sometimes provide insight into the 
suitability of particular methods for a certain class of problems. 

One such simple system, fundamental to the study of modem transportation, is that of 
a load moving over a beam. This "moving load problem" offers an adequate analogy in many 
circumstances to a vehicle crossing a bridge. Moving loads are characterized as being 
variable in both time and space, and they impose this same characteristic upon the 
displacements and stresses which describe the behavior of the structure over which they 
travel. These loads induce vibrations which can substantially increase the dynamic stresses in 
the underlying structure, and this vibrational effect is largely dependent upon the velocity and 
magnitude of the moving force. If the force is moving slowly, the dynamic effects can be 
neglected and a simple static analysis performed. Up until the early nineteenth century the 
static load approach was reasonably applicable to virtually all transportation problems. 

Historically, much of the research on the moving load problem has been geared toward 
rail transportation. With the advent of the locomotive and the building of the early railway 
bridges, a debate arose which provided the incentive for the initial study of the effects of 
moving loads. Some engineers at the time argued that these early trains traveled so quickly 
that a bridge didn't have time to deform, while others thought that the high train velocities 
caused an impact response in a bridge when crossing it. 

Initial studies of the moving load problem assumed that the mass of the beam was 
small compared to the mass of the load. R. Willis is credited with finding the original 
approximate solution to this problem in 1851.1 This problem is especially well-suited to rail 
transportation, because Wains are relatively heavy compared to railroad bridges. 
Consequently, massless beams or beams whose mass is comparative to that of the load are of 
interest. Also, trains are generally longer than the bridges they cross, and so a moving 



uniform load, rather than a concentrated one, would perhaps be more appropriate to railway 
studies. 

Fifty years later, the opposite problem was addressed by A. N. Krylov, S.P. 
Timoshenko and others who examined analytical solutions to the problem of a constant 
concentrated force crossing a simply-supported beam. Although intended for other uses, this 
problem often serves as a good model for an automobile crossing a highway bridge, because 
highway bridges are generally longer and heavier than the vehicles which travel over them. 
This problem is the focus of this paper. 

Since its conception, many variations of the moving load problem have been 
examined. A few notable studies include the analysis of vehicle/beam interaction caused by a 
series of moving loads, rather than a single load, crossing the beam, and the inclusion of 
corrections for shear deformation and rotary inertia effects in the beam response. Most 
recently, the moving load problem has been the subject of extensive finite element analyses. 
Y.-H. Lin and IV[ W. Trethewey have examined elastic beam response due to the movement 
of a spring-mass-damper system, 2 and G. N. Geannakakes and P.-C. Wang applied the 
increasingly popular B3-spline method to studying the problem of a load moving across a 
plate. 3 

The analytical solution of the fundamental moving load problem is represented by an 
infinite series. Consequently, modal superposition techniques are most useful in examining 
this problem. Traditionally, the solution to this problem is formulated to yield the equivalent 
solution of the mode-displacement method. This mode-displacement solution converges 
rapidly when computing the deflection of an undamped beam caused by a moving constant 
force. However, often the stresses in the beam are of primary importance, and the mode- 
displacement solutions for the bending moment and shear force in the beam do not readily 
converge. Consequently, the number of solution terms needed for an adequate representation 
of beam stresses can be computationally expensive. 

A more rapidly convergent solution is provided by the mode-acceleration method in 
which the total solution is broken down into two parts and represented by a pseudo-static 
response and a separate dynamic contribution. The pseudo-static response is not a series 
solution and thus convergence considerations for this component of the solution are 

unnecessary. 

The superior convergence of the mode-acceleration method in finding the bending 
moment of an undamped beam subjected to a constant moving load was studied by G. B. 
Warburton. 4 However, Warburton's analysis does not consider beam damping or the 
application of the mode-acceleration method to calculating the shear force in the beam. It is 
through this application that the superior convergence of this method is best illustrated. 
Another solution was presented by L. Fr•ba who combined the general solution of the 



goveming homogenous integro-differential equation with the particular solution of the non- homogenous integro-differential equation to arrive at the same result as Warburton. 

The mode-acceleration method is not often used to study continuous systems. 
However, it has been shown to provide rapid solution convergence and computational 
economy in the study of discrete vibrating systems as evidenced by Comwell, Craig, and 
Johnson. 5 Ldger and Wilson have also demonstrated the improved convergence achieved 
when pseudo-static corrections have been applied to finite element computations. 6 

PURI•SE AND SCT)PE 

This paper examines the convergence properties of two modal superposition methods: 
mode-displacement and mode-acceleration. Generalized solution formulations for both 
discrete and distributed dynamic systems based on each of the methods are derived. These 
solutions are then applied to the generalized problem of a time-dependent force moving across 
a uniform, simply supported beam. 

The beam is assumed to be of the Bemoulli-Euler type and its behavior described by 
small deformation theory. It has a constant cross section and mass per unit length. The force 
is representative of the gravitational effect of a relatively light vehicle crossing a relatively 
heavy beam (i.e., the weight of the beam is considered to be much greater than the weight of 
the vehicle). 

Three specific moving force problems are considered in this study. For the fast 
problem, the beam is undamped and the force constant. The second problem considers the 
effect of beam damping on the response due to a moving constant force. The third problem 
is that of a moving harmonic force on an undamped beam. 

The study of these problems provides insight into the modelling of bridge structures 
beneath moving vehicles. To estimate bridge system parameters fi'om measured input and 
output values, it is first necessary to develop parametric models. These models, which are employed in system identification, provide apriori information about the system which 
facilitates parameter estimation. 7 Modal methods can be applied to develop these 
computational models. By examining the moving load problems, assumptions can be made as 
to which modal summation method will be most useful in the development of these models. 



In this report, the relative merits of the mode-displacement and the mode-acceleration 
methods for moving load problems are investigated. Cmtomafly, the mode-acceleration 
method is developed in the context of discrete variable systems. However, as will be shown, 
the method is applicable to arbitrary self-adjoint systems, whether formulated in discrete, 
differential equation or integral equation form. Extension to certain classes of non-self- 
adjoint systems is also possible, but is not discussed here. 

The following analysis generalizes upon that of Meirovitch (1967) 8 and Craig (1981). 9 

Meirovitch presents the general response formulation of undamped continuous systems, and 
Craig generalizes the response of damped and undamped discrete systems. The following 
discussion permits a unified treatment of mode-displacement and mode-acceleration methods 
for discrete and distributed dynamic systems. 

Operator F_xtuafions for Dymmic Systems 

The general problem of forced vibration of a linear system may be written in the form 

°•Iv(x,t)] 
+ 

Z-?C[v(x,t)] 
+ gIv(x,t] f(x,t) (1) 

Ot z 

where M[.], C[.] and K[.] are spatial operator matrices andf(x,t) represents the load matrix. 
For example, the equations for a discrete system take the form 

M9 + Cf, + Kv 
d2igIO 

+ 

d •_,• 
+ 
• F(O 

dt z dt 
(•) 

where M, C, and K are constant matrices, while for a vibrating beam the scalar partial 
differential equation is 

• IEi Ozv 
+ pA •v ax2L a•=J a• = 

f(x,t) 

In this equation the operator expression 

clearly represents the system stiffness, while the expression 



M(.) pA(.) 

contains the system mass. In this system, no damping has been included although a 
generalized damping of the form 

could be added to incorporate both strain rate and velocity related damping terms. In general, 
a typical term of the K[.] operator for two independent spatial variables, x and y, takes the 
form 

while a term of M[.] has the general form 

mij fm.(,fl)(x,•,)( ")d m•.°)(') (,) 0 ._• 
+ + m,j •x{') + 

m•? (') 
D 

_(r) (• 
+ 

m•S) 8 •q () + + 

and q < p. This formulation includes as special cases the discrete (matrix) formulation, 
partial differential equation formulation and integral equation formulation of forced vibration. 
Moreover, it assumes a vector of response functions, vT(x,t)= {V•(X,t) V•(x,t)}, of the 
spatial variables x T {x y}. Generalization to three spatial dimensions is straightforward. 
While this formulation is more general than any encountered in practice, it contains all of the 
usual models for bars, beams, discrete systems, and finite element models as special cases, 
and thus permits a unified and efficient development. 

Symbolically the M[.], •.] and K[.] operators represent the spatial distributions of 
mass, damping and stiffness, respectively, within the system. As formulated, equation (1) 
admits a variety of structural system models that may be subjected to conservative or non- 
conservative loadings. 1°, 11 For present purposes, it may be assumed that K[.] and M[.] are 
self-adjoint operators. Thus, classical normal modes, •j(x), exist that satisfy the equation 



where coj is the jth natural frequency of the system. 7 Moreover, the Oj(x) form a basis for the 
solution space of the vibration problem and satisfy the orthogonality relationships 

(5) 

where •i•k is the Kronecker delta. The expressions (¢k, K[¢•]) and (¢k, M[¢•]) represent 
bilinear forms, special cases of which are well known in vibration analysis. For example, the 
orthogonality of the eigenvectors with regard to the mass and stiffness matrices is well known 
in discrete vibration analysis. For any operator matrix 6[.], the bilinear form takes the form 

(u,G[w]) urG w 
(6) 

for discrete problems and 

(u,G[w]/= f 
u 
•(x)G[w(x)lctx (7) 

D 

for continuous (integral or differential equation) problems. Moreover, it is assumed that •.] 
is a damping operator that is decoupled by the eigenvector transformation. One such operator 
is the generalized Rayleigh damping operator given by 

c[.] v•gI'] + •:,•M[-] (8) 

From equation (5) the orthogonality relationship 
O) 

is obtained for the operator of equation (8) where 

2• •,• (10) 

from equation (5) and (8). Clearly, from equation (8) and (10), •'k and •'m are coefficients 
which must establish the correct dimensionality for the damping operator matrix. The 
suggested damping for the beam vibration equations given earlier is one example of such a 
damping operator. 



The form of damping admitted by equation (8) requires that •k increases linearly with 
• in direct proportion to the K[.] operator contribution and varies with 1AOn in proportion to 
the M[.] operator contribution. Damping operators of the form of equation (8) represent a 
sufficient, but not a necessary, condition for decoupling of the 6[.] operator. Somewhat more 
general C[.] operators that permit •k to vary ind•dently fi'om mode to mode can also be 
used. However, systematic methods for obtaining explicit forms for these operators appear to 
be difficult to implement. The usual approach in practice is to perform modal decom•sition 
on the undamped system, and to simply to specify the values of •k in an •/d hoc fashion• and 
this approach is followed in the remainder of this report. 

Solution of General Forced Vilsation Problem by Mode-Displacement Method 

A set of eigenfunctions, {•}j(x)}Nj=D that satisfiy equation (4) and possess the 
orthogonality properties in equation (5) and (9) provide a basis for the N dimensional solution 
space of the operator equation (1). N is finite if the formulation is discrete and it is infinite if 
the formulation is for a continuous system. Thus, a solution of equation (1) can be 
represented as a series of eigenftmctions as follows 

N 
v(x,0 • aj(OOj(x) (11) 

j=l 

Substituting into equation (1), and using the linearity of the operators M[. ], C[. ] and K[. ] 
leads to 

N E [/ijM(•) + &jC(0g) + ayK(•j)] f(x,0 (12) 
j=l 

Taking the inner product of equation (12) with •(x) and using equations (5) and (9) yields 
2 &,+2{,c%&,+•,a, f,(0 k= 1,...,N (13) 

Thus, permitting the solution to be obtained as the sum of N single degree of freedom 

Solution of General Forced Vibration Problem by Mode-Acceleration Method 

An alternative solution for the operator equation (1) oRen displays superior 
convergence to the mode-displacement solution. Rewrite equation (1) as 



(14) 

and replace v on the right-hand side of equation (14) with the mode-displacement solution of 
equation (11) to obtain 

N N 
K[•] f(x,t) •_, &jC[•.•] •., iijM[•j] (15) 

j=l 

Now, separate the solution v(x,t) on the left-hand side into two parts such that 

v(x, t) v,,,,(x, t) + vo(x, t) (16) 

where I•D(X•0 is the dynamic component of the solution and vr•(x,t ) is the pseudo-static 
solution of the operator equation which satisfies 

K[v•,,(x,t)] fix, t) (17) 

Physically Vps may be interpreted as the response of an undamped massless system to f(x,t). 
Since K[.] is a spatial operator and is the same as that for the static response of the system 
under consideration, the pseudo-static portion of the solution may be formally constructed 
using the static influence function of the system. 

Substituting equations (16) and (17) into equation (15) yields 
N N 

K[VD] E •jC[•j] E ajM[•j] 
j=l j=l 

(18) 

Since the eigenfunctions are a basis, VD(X,t) may be written as 

N 

I• D(Xit) E f'lj(t) ilij (x) (19) 

Substituting equation (19) into equation (18) yields 
N N N 

j:l j:l j=l 

Then, taking the inner product of equation (20) with •(x) and utilizing the orthogonality 
relationships of equations (5) and (9) yields 



Hence, 

•lS•(t) -2•yoy&flt) /•flO (21) 

(22) 

Thus, the response, VD(X,t), may be written in the form 

vo(x, 0 -y__• aj(t) + /•y(0 •j(x) (23) 

and substituting equation (23) into equation (17) leads to the total displacement response 

I•(X'O I•,s(X'O E 2•j(•j 
(0 + •j(O •flX) (24) 

Noting that for typical vibrating systems 0•j >> 1 as j increases and that typically •j < 1, it is 
apparent that the terms in the summation of equation (24) die out quite rapidly. Thus, the 
summation in equation (25) may often be truncated at some n << N, yielding the approximate 
solution 

which is the generalized mode-acceleration solution. 

Statement of Generalized Moving Load Problem 

To demonstrate the applicability of the mode-superposition methods to structural 
vibration problems, the moving load system represented in Figure 1 will be examined. The 
beam is oriented along the x-axis with its origin at x 0 and is simply-supported at both 
ends. It has a length, L, a constant stiffness, EI, and a constant mass per unit length, pA. 
The force, F(t), is moving at a uniform velocity, c, along the beam. Thus, at any instant, t, 
the position of the force is given by 

x/O ct (26) 

Furthermore, the transverse displacement of the beam is v(x,t) and designated as positive 
downward. 



v 
F 

c 

L •j 

Force moving across a uniform, simply-supported beam at a constant velocity, c. 

Hamilton's principle or mother means can be utilized to obtain the goveming 
differential equation for the moving load system so that it conforms to equation (1). For this 
specific case, the problem is formulated such that 

M[v(x,t)] pAv(x,t) 

and 

•v(x,O] El 
•v(x't) (28) 

Ox 4 

The CIv(x,t)] operator is not explicitly given, but it is assumed to lead to constant • for each 
mode. 

The force is described by 

sSx, t) 
{•(t) 5(x-cO for O•ct•L (29) 

for ct>L 

where F(t) is the time-dependent forcing function. 

10 



Solution of Generalized Moving Load Problem by •Displacement Method 

From equation (11), the solution is assumed to have the form 

N 
V(X'O E =j(O•j (x) 

j=l 

where N is infinite. The normalized eigenfunctions of a uniform beam, simply-supported at 

j 1,2,... 01) 

with the corresponding eigenvalues 

•,j J= j 1,2,... (32) 
L 

and natural fi'equencies 

¢oj= • j=l,2 

Taking the inner product of equation (29) with the eigenfunction yields 

fj(t) 
I p-•F(t)sin(d)jt) 

where the loading fi'equency, (% is given as follows: 

jnc 6j- 
I., 

The goveming equation of the time-variant component of the solution is then obtained by 
plugging equation (34) into equation (13) to yield 

11 



j= I,...,N 

Because the system is linear and assumed to be critically underdamped (i.e., •j < 1), the 
solution to equation (36) can be expressed by the Duhamel integral as follows 

+ aX(0)e -¢"/cos( 

(•6) 

O7) 

where the • frequency is defined as 

By substituting equations (31) and (37) into equation (30) and assuming zero initial 
conditions, the following mode-displacement solution of the generalized moving load problem 
is obtained 

v(x,O •.• •)sin(,•,) e in[ O9) 

Solution of Generalized Moving Load Problem by Mode-Acceleration Me• 

The mode-acceleration solution of the moving-load problem is obtained by separating 
the total solution into its pseudo-static and dynamic components. The dynamic contribution 
can be readily obtained by substituting the fLrst and second time derivatives of equation (37) 
into equation (23). By using the Leibnitz' Formula, the first time derivative of t•j(t) is found 
tobe 

&j(t) -• 
0 

0o) 

and taking the second-time derivative yields 

12 



(41) 

Substituting equations (40) and (41) into equation (23) gives the following expression for the 
generalized dynamic component of the moving load problem 

1 iF(•)sin(6.•)e 
(42) 

The goveming equation of the pseudo-static contribution is derived by substituting 
equations (28) and (29) into equation (17) which produces 

El. F(OS(x-cO for OgctgL (43) 
Ox 4 

Equation (43) can be directly integrated to solve for Vp/X,O. The result is almost identical to 
the deflection equation of a simply-supported beam subjected to a static force at some 
position XF. This well-known solution can be written as 

F 
I x(L-x•)(2•#-x•-x2) 

v•,,ac(x) 6--•[xv(L_x)(2xL_xZ_x • 
x •xe 

X > X F. 

(44) 

However, the pseudo-static displacement solution differs from equation (44) in that the 
position of the force is a function of time as indicated by equation (26). Also, the magnitude 
of the force does not have to be constant but may also be time-dependent. Thus, the equation 
for the pseudo-static component of the moving-load problem solution is 
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v•,•(x,O F(t), 
6EIL 

X K X F 

X • X F. 

(45) 

Alternatively, the above expression can be represented by the following equivalent infinite 
series solution: 

(4O 

This pseudo-static solution formulation of equation (46) is sometimes useful in deriving the 
dynamic component of the total solution for particular moving load problems. 

RESULTS AND DISCUSSION 

This study considers three specific moving force problems. In the first, the damping 
of the beam is neglected and the moving force is assumed to be constant. In the second, a 

non-zero beam damping factor is introduced into the constant moving force problem. In the 
third, the undamped beam is re-examined, but it is subjected to a harmonic force instead of a 
constant one. 

Comparison of Modal-Supelposilion Methods for an 
Undaml• Beam Subjected to a Comtant Moving Force 

For this sub-problem, it is assumed that the time-dependent force is replaced by a 
constant one, F• F(t), and that • 0. The mode-displacement solution is found by 
substituting these parameters into equation (39) and performing the integration to obtain 

VMD(X,t) 
EIg 4 J2q2-az)[ •--•--)---f [•--)js for (4• 

and 

for a=j 
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where the dimensionless quantity, a, is defined as follows 

(49) 

Note that c• is a function of the structural properties of the beam, and typically •z 1.0 
corresponds to vehicle speeds greater than 400 km/h. 12 Thus, for most applications and the 
scope of this study equation (47) rather than equation (48) will be of primary practical 

Similarly, the mode-acceleration solution to this problem is found by replacing the 
time d•dent force, F(t), in equations (42) and (45) by F and setting • equal to zero. After 
integrating the dynamic component, it is then added to the pseudo-static contribution to obtain 

vua(x,t) 
(5o) 

Figure 2 shows the superimposed plots of the normalized mid-span displacements for 
the 1-term and 25-term mode-displacement solutions and the 1-term mode-acceleration 
solution when a 0.5. The mode-displacement and mode-acceleration solutions were 
normalized by dividing them by the mid-span deflection due to a static force, F, at x=L/2. 
These normalized solutions are called the displacement dynmnic magnification factors. Note 
that when the moving load is at mid-span (ct/L 0.5) the displacement is 20% greater than 
the deflection due to the static load. This magnification factor is highly d•dent upon a. 
As c• approaches zero, the magnification factor at ct/L 0.5 goes to one, as would be 
expected, but in general the magnification factor is a non-linear function of a. Olsson 
provides a detailed examination of this behavior in reference 12. 

Figure 2 shows that convergence of the displacement solutions occurs rapidly. Both 1- 
term solutions are good approximations of the 25-term solution; however, the 1-term mode- 
acceleration solution is slightly better. Because both displacement solutions converge so 
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rapidly, there is little apparent advantage to using one over the other; however, the superior 
convergence properties of the mode-acceleration become evident when calculating the bending 
moment and shear force. This will be demonstrated in the next two sections. 

Bending-moment solutions 

The bending moment, M•x,t), of the •am is approximated from the relation 

02vu(x't) (51) M•(x,O 
Ox 2 

Substituting equation (47) into (51) gives the mode-displacement moment equation 

Muo(x,t ) (52) 
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Figun• 2 Dynamic magnification factors for mid-span displacement based on 1-term and 25-term mode-displacement 
solutions and a 1-term mode-acceleration solution. 

This solution does not converge as quickly as the solution for the deflection does because the 
series coefficient for the moment equation is 1/(j2-t• 2) whereas the displacement solution series 
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coefficient has an additional j2 multiplier term in the denominator. Although, each additional 
term will contribute less and less to the total moment solution, the convergence is not as 
dramatic as it was for the displacement solution. 

Substituting equation (50) into (51) gives the mode-acceleration moment equation 

(53) 

Figure 3 shows the superimposed plots of the normalized mid-span bending moments 
for the 1-term, 3-term and 25-term mode-displacement solutions and the 1-term mode- 
acceleration solution as the load moves along the beam (a 0.5). The bending moments 
were normalized with respect to the mid-span bending moment of the beam subjected to a 
centrally-applied static load, F. This normalized parameter is called the moment dync•nic 
magnification factor. 
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As can be seen from the plot, convergence of the mode-displacement moment solution 
is slower than it was for mode-displacement displacement solution, but the 1-term mode- 
acceleration moment solution remains fairly accurate. In fact, the 1-term mode-acceleration 
solution is a better approximation than even the 3-term mode-displacement solution. It can 
also be shown that as the load velocity increases (i.e., as tx exceeds 0.5) more than three 
terms are required for a reasonable mode-displacement approximation, but the 1-term mode- 
acceleration approximation remains very accurate. 

Shear-force solutiom 

The shear force, T•(x,t), of the beam is approximated from the relation 

r•(x,0 m 
°•v u(x't) (54) 

Substituting equation (47) into (54) gives the mode-displacement shear equation 

TMo(x, 0 2___F• •.= 
q2-•2)L k L )--• k•)3 co 

(553 

Note that the series coefficient for the shear force solution is simply the bending moment 
coefficient multiplied by j. As would be expected, this multiplier further impedes rapid 
convergence and, consequently, more series terms are needed for the mode-displacement shear 
force solution than were needed for the mode-displacement bending moment solution. 

Substituting equation (50) into (54) gives the following mode-acceleration shear 
equation 

(56) 

The shear equation converges more slowly than the moment and displacement 
expressions, but a 2-term mode-acceleration approximation is capable of providing a fairly 
accurate representation of the exact solution. Note that two terms are needed because the 
odd-numbered terms do not contribute to the total shear solution at mid-span, just as the 
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even-numbered terms did not contribute to the total mid-span displacement and moment 
solutions. 

Figure 4 shows the superimposed plots of the normalized mid-span shear forces for a 
2-term, a 10-term, and a 100-term mode-displacement solution and a 1-term mode- 
acceleration solution when •x 0.5. The shear forces were normalized with respect to the 
quarter-span shear of a beam under a centrally-applied static load to give the shec• dynamic 
magnification factor. 
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l•igl• 4 Comparison of dynamic magnification factors for mid-span shear force based on 2-term, lO-terrn and lO0-term 
mode displacement solutions and a 2-term mode acceleration solution. 

The 2-term mode-acceleration solution proves to be a far better approximation of the 
exact shear behavior than either the 2-term or the lO-term mode-displacement solutions. In 
fact, when the load is traveling over the mid-span, the 2-term mode-acceleration solution 
provides a better representation of the discontinuity than even the lO0-term mode- 
displacement solution. 
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Comlmrison of Modal-Supe•position M•thods for a 
Dmnped Beam Subjected to a Constant Moving Fonze 

Next, the constant moving force problem will be re-examined, but damping of the 
beam will be taken into account. The mode-displacement solution is found by integrating 
equation (39) where the force parameter is once again kept constant, but the damping factor, 
•, is retained to give 

The mode-acceleration solution is obtained by taking the same considerations into 
account for equations (42) and (45) and then adding the two contributions to yield 

Figure 5 shows the displacement dynamic magnification factors at mid-span for the 1- 
term and 25-term mode-displacement solutions and the 1-term mode-acceleration solution of a 
damped beam subjected to a moving load with a 0.5 and a constant modal damping ratio 
• 0.1. Note that for a 0.5 the damping attenuates the mid-span displacement, and, 
consequently, the dynamic magnification factors for the damped beam are smaller than those 
for the undamped beam shown in Figure 2. Once again, the mode-acceleration solution 
converges quickly and is only slightly better than the 1-term mode-displacement solution. 

Bending-moment solutions 

The mode-displacement bending moment solution is obtained by substituting equation 
(57) into equation (51) to achieve 
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(59) 

Equation (58) is substituted into equation (51) to obtain the following mode- 
acceleration bending moment solution 

"' 2L )•(L-x) for 

•6o) 
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lq'igllle 5 Co, son of dynamic magnification factors for mid-span displacement based on 1-term and 25-term mode- 
displacement solutions and 1-term mode-acceleration solution. 

Figure 6 shows the superimposed plots of the bending moment dynamic magnification 
factors at mid-span for the 1-term, 3-term, and 25-term mode-displacement solutions and the 
1-term mode-acc.eleration solution as the load moves along the • beam (a 0.5) for a 

constant modal damping ratio • 0.1. As can be seen from the plot, convergence of the 
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mode-displacement moment solution is slower than it was for the displacement solution. The 
1-term mode-acceleration moment solution is still very accurate and better approximates the 
exact solution than even the 3-term mode-displacement solution. Note that the introduction of 
damping does not affect the accuracy of the mode-acceleration bending moment solution, but 
it does appear to impede the convergence of the mode-displacement solution. 
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Ftgul• 6 Comparison of dynamic magnification factors for mid-span bending moment based on 1-term, 3-term, and 25- 
term mode-displacement and 1-term mode acceleration solutions. 

Shear-force solutions 

The mode-displacement shear force solution is obtained by substituting equation (57) 
into equation (54) to achieve 

(61) 
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Equation (57) is substituted into equation (54) to obtain the following mode- 
acceleration shear force solution 

• •2L)[ -x v 
for x>x 

e 

(6•) 

The superimposed plots of the normalized mid-span shear forces for a 2-terrn, 16-term, 
and a 150-term mode-displacement solution and a 2-term mode-acceleration solution (• 0.5) 
for a constant modal damping ratio • 0.1 are shown in Figure 7. Once again, the 2-term 
mode-acraeleration solution proves to be a far better approximation of the exact shear behavior 
than either the 2-term or the 16-term mode-displacement solutions and it provides a better 
representation of the discontinuity than even the 150-term mode-displacement solution. 
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15gum 7 Comparison of dynamic magnification factors for mid-span shear force based on 2-term, lO-term and 100-term 
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Coinpa•on of ModaI-Supeq•osition Metho• for an 
UndmnI• Beam Subjected to a Harmonic Moving Force 

As a final illustration of the superior convergence of modal acceleration solutions, 
consider a harmonic force traveling across the undamped beam. For this sub-problem, it is 
assumed that • 0 and the time-d•dent force is represented by 

S(t) F sin(n0 (63) 

where f• is the forcing frequency of the harmonic load. The mode-displacement solution is 
found by substituting equation (63) into equation (39) and performing the integration to obtain 

(64) 

and 

vu°(x'O EI•'•=I[ j'L(¥-n•)2 2j • L 
when "¢ =j(j-•) (65) 

and 

when "• ,•jq+a) (66) 

where the new dimensionless quantity •,, defined as 

•( n: --,t2 (67) 
•n 

represents the ratio of the forcing frequency to the fundamental natural frequency of the 
beam. 

The pseudo-static and dynamic displacement components of the beam under the 
moving harmonic load can be obtained by substituting equation (63) into equations (42) and 
(45) and setting • equal to zero. This yields the following expression for the pseudo-static 
contribution 
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[ x(L-cO[2ctL-x(ct) 2-x 2] Fsin( t) v•(x,t) 
6EIL 

•[ ct(L-x)[2xL-x2-(ct) 2] 

and the dynamic contribution is obtained as 

for x • ct (68) 
for x > ct 

and 

when •t =k(k +a) (69) 

and 

when v =•(•+=) (70) 

when • •k(k+•t) (71) 

Thus, the mode-acceleration solution for the displacement of the beam under the moving 
harmonic load is 

Fsin(fl 01 x(L -cO[2ctL -x(ct) 2 -x •1 
v•(x,O vd(x,O + • [ ct(L-x)[2xL-x2-(cO •1 

for x • ct (72) 
for x > ct 

where Vd(X,t) is given by equations (69) to (71). 

The number of terms necessary for an adequate solution depends upon the forcing 
fi'equency, f•, of the harmonic load. If the load is oscillating at or near one of the system's 
natural frequencies, then it is usually necessary to include all of the terms up to and including 
that which corresponds to the mode of excitation. The parameter which indicates how many 
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terms are needed is 7 which represents the number of sine waves the force will oscillate 
through as it traverses the beam. A reasonable truncated solution should include all terms 
less than T '/• + 1. 

In order to examine the effect of 7 on solution convergence, we will consider a beam 
subjected to a load traveling at •z 0.5 and oscillating at three different forcing frequencies: 
7 0.5, 7 2.5, and 3' 6.5. Figure 8 shows the displacement dynamic magnification factors 
at mid span for the 1-term and 25-term mode-displacement solutions and the 1-term mode- 
acceleration solution of a beam subjected to a moving harmonic load with 7 0.5. Figures 9 
and 10 show the same plots for 7 2.5 and 7 6.5, respectively. Note that these plots were 
normalized with respect to a stationary t'mrmonic load at mid-span. 
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Flglil• 8 Dynamic magnification factors for mid-span displacement based on 1- and 25-term mode-displacement and 
1-term mode acceleration solutions (7=0.5). 

As was the case for the non-harmonic moving load, the displacement solution should 
converge relatively quickly. Figure 8 shows that both 1-term solutions are good 
approximations of the exact solution when 7 0.5. As 7 increases to 2.5, the 1-term mode- 
displacement solution loses accuracy, but the mode-acceleration solution still provides 
excellent convergence. However, at 7 6.5, at least three terms of either solution are needed 
because the harmonic force is oscillating at a frequency between the second and third natural 
frequencies of the beam. In general, the mode-acceleration solution provides better 
convergence than the mode-displacement solution, but the number of terms needed for 
convergence is dependent upon the forcing frequency. 
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Bending-nmment solutions 

The mode-displacement bending moment solution is obtained by substituting equations 
(64) to (66) into equation (51) which gives 

(73) 

and 

when v =J(/-•) (?4) 

and 

when 7 •J(i±a) (75) 

The mode-acceleration bending moment solution is derived by substituting the mode- 
acceleration displacement solution for the harmonic force problem into equation (51), so that 

for x • x e (76) 
for x • X F. 

where 

when 7 k(k +(x) (77) 

and 

when 7 =k(k-•x) (78) 

and 

when 7*k(k± •) (79) 
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Figures 11, 12, and 13 show the bending moment dynamic magnification factors at 
mid-span for the three harmonic loads described above. The superior convergence properties 
of the mode-acceleration solution is illustrated in both Figures 11 and 12 where ? 0.5 and 
2.5, respectively. In each of these cases, the 1-term mode-acceleration solution proves to be 
more representative of the exact solution than either the 1-term or 3-term mode-displacement 
solutions. However, Figure 13 again shows that as ? increases to 6.5 the 1-term solutions are 
inadequate. The 3-term mode-displacement solution is approaching convergence, but a 5-term 
solution would be better. Although it is not included on the graph, the 3-term mode- 
acceleration solution for ? 6.5 provides excellent results. 
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Shear Fmce solutions 

By substituting the mode-displacement displacement solution for the harmonic force 
problem into equation (54), the following mode-displacement shear force solution is obtained: 

and 

when ¥ =j(]+¢) (80) 

when y =j(j- •) (81) 

and 

when ¥ ,j•± ix) (82) 

The mode-acceleration shear force solution is derived by substituting the mode- 
acceleration displacement solution for the harmonic force problem into equation (54), so that 

Tua(x,t) T•(x,t) 
Fsin(flt)(•t• (L-cO for x• x F 

x 
t•:[ 

-Ct forx •x 
r 

wheFe 

and 

and 

O) kt$in(•kt) cos[(•-6•)t] 
2 

(' +k•)2c°s[(" +d•k)t]-k 'c°•(°•t) 
c°•-•--• 

-(¥ +k¢) 

(¥-k•x)2c°s[Cf)-G')t]-k'c°sC(°•t)c°•-•--•)k'-C¥ 
-k¢) 

when ¥ =k(k+•,) 

when (89 
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when ¥ •k(k± a) 

Again, the mode-acceleration shear force solution for the harmonic force problem 
converges far more rapidly than the mode-displacement solution. Figure 14 shows the shear 
dynamic magnification factors at mid-span for the 2-term, 4-term, and 150-term mode- 
displacement solutions and the 2-term mode-acceleration solution when •/= 0.5. The 2-term 
mode-accdemtion solution is far better than the 4-term mode-displacement solution and 
almost identical to the 150-term mode-displacement solution. The discontinuity at ct/L 0.5 
is fully represented by the 2-term mode-acceleration solution and still only approximated by 
the 150-term mode-displacement solution. Figures 15 and 16 show that for ), 2.5 and ": 
6.5, the 2-term mode-acceleration solution remains superior to the 4-term mode-displacement 
solution, especially in the vicinity of the discontinuity at ct/L 0.5. 
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Figu• 14 Dynamic magnification factors for mid-span shear force based on 2-, 4- and 150-term mode-displacement 
and 2-term mode-acceleration solutions (?=0.5). 
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CONO.IJSIONS 

The analytical solution to the fundamental moving load problem is an infinite series 
solution. The solution for the beam deflection converges rapidly and a very accurate 
approximate solution can be obtained by using either the mode-displacement or mode- 
acceleration method and truncating the infinite series. For a constant load moving across a 
damped or undamped beam, one term of the solution is usually all that is needed for a 
reasonable approximation. When the moving load is harmonic, the forcing frequency 
determines how many modes must be considered, and, in general, it is not necessary to 
include terms in the displacement solution which correspond to natural frequencies higher 
than the forcing frequency. 

However, the convergence property of the mode-displacement solution deteriorates 
when it is used to calculate the bending moment and shear force in the beam. The mode- 
acceleration solution obtained by separating the pseudo-static response from the dynamic 
component of the solution greatly improves solution convergence for all of the moving load 
cases presented in this paper. 

Another conclusion relates to the fact that the pseudo-static accelerations are much 
smaller than the dynamic accelerations, even though the pseudo-static term dominates the 
displacement and strains. Therefore, the practical use of accelerometer data is likely to be 
limited for such a structure. 

RECOMMENDATIONS 

The insight gained from this solution technique is directly applicable to the study of 
transportation structures, because, in general, the pseudo-static response is the dominant 
component of the total response of most highway bridges. This is attributed to the fact that 
vehicle weight is frequently less than one percent of the total weight of the bridges which the 
vehicles must cross. When modeling highway bridge behavior, the mode-acceleration 
solution techniques can significantly reduce computational time and labor. Furthermore, the 
generalized mode-acceleration solution to the moving load problem presented in this paper 
can be readily applied to any time-dependent moving force, including randomly varying 
vehicular loads. 
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